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ABSTRACT
While overall bandwidth in the internet has grown rapidly
over the last few years, and an increasing number of clients
enjoy broadband connectivity, many others still access the
internet over much slower dialup or wireless links. To ad-
dress this issue, a number of techniques for optimized de-
livery of web and multimedia content over slow links have
been proposed, including protocol optimizations, caching,
compression, and multimedia transcoding, and several large
ISPs have recently begun to widely promote dialup accel-
eration services based on such techniques. A recent paper
by Rhea, Liang, and Brewer proposed an elegant technique
called value-based caching that caches substrings of files,
rather than entire files, and thus avoids repeated transmis-
sion of substrings common to several pages or page versions.

We propose and study a hierarchical substring caching
technique that provides significant savings over this basic ap-
proach. We describe several additional techniques for mini-
mizing overheads and perform an evaluation on a large set of
real web access traces that we collected. In the second part
of our work, we compare our approach to a widely stud-
ied alternative approach based on delta compression, and
show how to integrate the two for best overall performance.
The studied techniques are typically employed in a client-
proxy environment, with each proxy serving a large number
of clients, and an important aspect is how to conserve re-
sources on the proxy while exploiting the significant memory
and CPU power available on current clients.
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1. INTRODUCTION
The last few years have seen a significant increase in the

available bandwidth on the internet, and many clients have
upgraded to faster cable and DSL connections to the inter-
net. However, there are still large numbers of clients that
have only very slow connections, including wired dialup con-
nections and also many cellular connections for new mobile
clients. Thus, the gap between fast and slow clients may
have actually increased, and there is a need for techniques
that can bridge this gap in a transparent and (as much as
possible) application-independent manner.

Caching and compression are maybe the most widely used
techniques for dealing with slow networks, but both have
clear limitations at least in their basic forms. Caching avoids
the repeated transmission of identical objects, but only works
if objects are completely unchanged and fails if they are even
slightly modified. However, there are many scenarios where
content is only gradually modified over time or there are sig-
nificant similarities between different objects. When applied
to individual objects, compression only exploits redundan-
cies within that object. Compression techniques on streams,
such as LZW type compression in modems, typically only
exploit redundancies due to very recently seen data, and are
not optimized for very long histories of transmissions.

A significant amount of recent work has focused on new
techniques, many of them closely related to caching and
compression, that can overcome these shortcomings and thus
further reduce communication delays. For example, string
decomposition techniques based on Karp-Rabin fingerprints
have been used to remove redundant network transmissions
in applications such as general network traffic [32], distributed
file systems [25, 10], and web access [29]. File and data syn-
chronization techniques, such as the rsync utility [38] or
tools for handheld synchronization [2], exploit similarities
between data to be transmitted and objects already stored
at the recipient without the sender having to know those
objects. Optimized delta compression techniques [33, 3, 20,
22, 35] can achieve significant additional savings by com-
pressing data with respect to similar objects known to both
sender and receiver. In addition to academic work, there
are a large number of products and startup companies that
heavily depend on these types of techniques.

Thus, there continues to be great interest in techniques for
hiding the effects of slow communication links on application
performance and user experience. While the techniques can
be deployed in an end-to-end manner, they are most often
used in a client-proxy architecture, where a proxy on the
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high-bandwidth side of the internet communicates with one
or often many clients on the other side of a slow link using an
optimized protocol based on some of the above techniques.
The most widely known examples are the systems for accel-
erating dialup web access that are currently being offered
by AOL (AOL 9.0 Velocity), NetZero (NetZero HiSpeed),
EarthLink (EarthLink Accelerator), and Sprint PCS (Vi-
sion), among others.

In this paper, we mainly focus on the case of web ac-
cess, for which we collected our data sets. However, our
main contribution, an optimized hierarchical approach to
substring caching, is applicable to other scenarios as well.
The approach introduces a natural multi-resolution view
of caching, where information about very recently accessed
items is maintained in detail, while information about older
items is only kept in very coarse-grained form. One impor-
tant consideration in client-proxy systems is the potential
bottleneck at the proxy. Since the cost of the service de-
pends on the number of clients that can be supported by a
single proxy, and many clients have significant spare memory
and CPU capacity, it is desirable to use asymmetric tech-
niques that minimize proxy load by moving as much work
as possible to the client. We follow this approach, which
fits well with content delivery scenarios such as web access
where data primarily flows from proxy to client.

The paper is organized as follows. In the next section
we give some background on proxy-based web acceleration
and describe the Value-Based Caching technique of Rhea,
Liang, and Brewer [29]. Section 3 summarizes the contri-
bution of this paper. In Section 4, we describe our Hier-

archical Substring Caching approach, compare it to Value-

Based Caching, and propose and evaluate some additional
optimizations. Section 5 compares the approach to another
common approach based on delta compression, and gives a
hybrid that outperforms both. Finally, Section 6 contains
a brief discussion of related work, and Section 7 lists some
open problems.

2. PRELIMINARIES
With the general perspective provided in the introduction,

we now review previous work on optimizing Web access over
slow links. After a general overview, we describe the value

based caching technique in [29] and review previous work on
delta compression of web content.

2.1 Web Access Over Slow Links
The problem of optimizing Web access over slow links has

been studied almost since the beginning of the Web, with
early work appearing in [5, 15, 14, 13]. Since then, a num-
ber of techniques have been studied in the literature and
deployed in various commercial offerings. Before going into
technical details, we note that there are two other issues
that are often studied jointly with low-bandwidth web ac-
cess in the literature: (1) The adaptation of content to small-
display devices such as handhelds and cell phones, related
to bandwidth issues in that smaller screens can only display
low-resolution images and limited amounts of text (which
enables additional opportunities for compression), and (2)
the problem of serving diverse client populations with vary-
ing bandwidth, display, or computational constraints (i.e.,
broadband vs. cellular access and handheld vs. fast PC).
In the following, we do not focus on these issues, and the
reader may assume the common scenario of reasonably pow-

erful clients with full displays connected via links with slow
but fairly predictable bandwidth, such as is typical for di-
alup ISPs.
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Figure 2.1: Client-Proxy Architecture for Web Access

A standard architecture for our scenario is the client-proxy
architecture shown in Figure 2.1 where a proxy connected at
high bandwidth to the internet is connected to a client via a
slow link such as a modem connection. The proxy and client
then communicate over the slow link using an optimized and
usually proprietary protocol. In order to make the process
transparent to applications on the client side, the client may
also run a client-side proxy process that interacts with the
proxy, or this functionality can be integrated into the ap-
plication (web browser) on the client. Such proxy systems
typically employ several approaches to optimize communi-
cation, in particular:

• Protocol optimizations: changes to HTTP or other
protocols can avoid repeated opening of connections or
eliminate roundtrips over the slow link.

• Compression: standard compression schemes such
as gzip or optimized compressors for HTML, email, or
other special file formats (e.g., MS Office formats) are
used to decrease data size.

• Transcoding: images and video files are transcoded

into smaller files of lower quality. In the best case, im-
ages are substantially reduced with no visible impact,
though in practice quality is often affected.

• Caching and Differential Compression: caching
is a standard technique in browsers and web proxies
with known but limited benefit. Significant additional
benefits can be obtained by exploiting similarities be-
tween different version of the same page or similar
pages, as discussed in the introduction, and this has
been a focus of a lot of research.

In our work, we focus on the last approach which we believe
to have potential for significant improvements. We note that
a complete system needs to include several or all of these
approaches to be competitive with the best commercial sys-
tems. Protocol optimizations and standard compression are
well understood. Specialized compression and transcoding is
highly dependent on the data type, and significant amounts
of industrial effort have been put into transcoding and into
compression of common formats such as MS Office files. The
techniques we focus on here are primarily applicable to non-
multimedia data types, although some limited benefits can
also be obtained for image data as we will show.

2.2 Fingerprints and Value-Based Caching
We now describe the recently proposed value-based caching

technique of [29] in detail. The main idea is very simple.
First, it is sometimes beneficial to identify an object not by
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its name, but by a hash of its content. In the case of the
web, there is a significant amount of aliasing, i.e., identical
pages are returned for different URLs. This may be due to
replicated servers or due to session IDs or other data being
appended to URLs [19]. This limits caching if objects are
identified by URL, and it may be better to identify objects
by a hash of their content.

Value-based caching goes beyond this by partitioning files
into blocks of some reasonable size, and caching these blocks
separately, each identified by a hash of its content. This
means that a page that is similar to a page previously viewed
by a client (i.e., contains long common substrings) may al-
ready be partially cached in the client cache, and we only
need to send those blocks that are not yet known to the
client. The main challenge is that in order to identify the
common substrings, the new file and the previously viewed
file need to be partitioned in a consistent manner such that
the common substring corresponds to a block in both files.
Simply partitioning files into fixed-size blocks, e.g., of 500
bytes, does not work since a single extra character at the
start of the new file would misalign all block boundaries
between the files.

This problem is solved through the use of Karp-Rabin
fingerprints [18]. In particular, a smaller window (e.g., of
size 20 bytes) is moved over each file that is processed. For
each byte position of the window, we hash the content using
a simple random hash function. If the hash value is 0 mod b
(say, b = 512), then we introduce a block boundary at the
end of the current window. Figure 2.2 shows an example for
a window size of 4 bytes and b = 8.

hash

block 1 block 3block 2

abacabcadabcbbdadacbacddaccb ...

xxx1562057121245623037214652 ...  

Figure 2.2: Use of Karp-Rabin fingerprints to partition

a file into blocks. In this case, a window of size four

bytes is moved over the file and at each position a hash

h() of the window is computed. Hash values are in the

range {0, . . . , 7}, and a block ends whenever we have a

hash value of 0 mod 8. Thus, the expected block size is 8

bytes unless there are repetitive patterns in the file.

The resulting blocks are then cached and identified by a
hash of their content. We note that the hash function for
identifying blocks is independent of the hash function used
for the small window. For example, we may decide to use
MD5 or SHA1 for hashing blocks, while the hash function for
the window is chosen such that it can be efficiently “rolled”
over the file. In particular, for efficiency reasons we need to
be able to compute an updated hash value in constant time
from the previous hash value whenever the window is shifted
by one character, which is one of the main benefits of the
hashes described in [18]. The only purpose of the window is
to define block boundaries in a content-dependent manner.
We observe that when a substring in one file contains a block
boundary according to the above process, then if the same

substring also appears in another file, it is guaranteed to
again contain the same block boundary. Similar ideas have
been used in the networking and OS communities to decrease
communication costs for repetitive data [25, 32, 10].

There are some technical issues with the above approach
that need to be addressed. A naive view would be that we
expect a boundary to occur approximately every 1/b bytes.
However, many files contain very regular patterns of data
that may result in very short or infinite size blocks (e.g., if
the file consists of a single character that is repeated thou-
sands of times). In fact, a malicious user could invert the
random hash function, and create documents which result
in very small or very large blocks. Although the consistency
of the content is still ensured on the client, there may be a
negative effect on performance. This problem is resolved in
[29] by enforcing a minimum and maximum block size. For
example for b = 2048 one might choose a minimum block
size of 64 bytes by ignoring earlier 0 mod b hash values, and
a maximum block size of 16384 bytes after which a bound-
ary is forced. A possible alternative is the scheme in [31]
though it is unlikely to change results much.

Thus, in the proxy architecture shown in Figure 2.1, both
clients and proxy would partition each file they encounter
into blocks, and build a lookup structure on the hash of each
block. Note that the proxy would only have to keep this
lookup structure with the hash values in order to encode a
file that is sent to the client; the actual files do not have to be
cached at the proxy. When sending a new file for the client,
the proxy uses the hashes to check whether any of the blocks
have already been sent to the same client and if so, the hash
is sent instead of the block. The other, unmatched blocks
are either sent verbatim or compressed via gzip. On the
client side, both hashes and files are stored, with pointers
from the hashes to the file positions where they occur, to
allow the client to identify the blocks corresponding to the
received hashes.

We note that this approach fits ideally into the frame-
work of one proxy interacting with many fairly powerful
clients, since most of the data caching is done at the clients
while only a small amount of data per client is stored at the
proxy. For example, in [29], only a 16-byte hash is stored
at the proxy for each block of expected size 2048 bytes. For
concurrency reasons, each file is also briefly retained at the
proxy until it is sure that it has been correctly received at
the client, but this does not change the overall picture. On
the other hand, the computational load of the algorithm at
the proxy is low enough so that the incoming data can be
processed at a rate of multiple MB/s even with a moderate
CPU [29]. This allows the proxy to serve a large number
of clients simultaneously. Our goal is to obtain significant
bandwidth savings over the approach in [29] while preserv-
ing the client-centric space and work distribution between
the two sides.

2.3 Delta Compression Approaches
Value-based caching provides an alternative to another,

more extensively studied approach to exploiting similarity
between versions of pages or different pages, called delta

compression. A delta compressor takes two files as input,
a reference file and a target file, and produces a delta that
describes the difference between the two files in a minimum
amount of space. Given the reference file and delta, the cor-
responding decompressor can recreate the target file. Delta
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compression has been widely studied over the last few years,
see [33] for an overview, and a number of optimized delta
compressors based on LZ-type approaches are freely avail-
able [35, 20, 22].

Under the client-proxy scenario in Figure 2.1, delta com-
pression can be applied as follows. Both proxy and client
cache previously transmitted files, and if a new file has to
be transmitted, then it is delta compressed by selecting a
similar file in the cache (either an older version or a differ-
ent page with similar content or structure) as a reference
file. Several approaches for using delta compression in web
proxies have been proposed, including approaches limited to
using old versions of the same page as reference files [4, 24,
11, 23], and others that attempt to select the most simi-
lar reference file among all cached pages [7, 30]. In the first
case, a drawback is that pages need to be stored at the proxy
for a longer period of time in case of a revisit, and aliased
pages cannot be captured. In the second case, we need an
efficient way to identify the best reference file, and several
approaches for this are studied in [7, 30]. On the positive
side, results in [30] indicate that even if pages are retained
for brief periods, some decent benefits can be obtained.

In the second part of this paper, we compare our hierar-
chical substring caching approach to delta compression, and
derive a hybrid that improves on both approaches. Com-
pared to value-based caching and our hierarchical substring
caching, delta compression seems to put more load onto the
proxy as it requires files to be retained by the proxy for
a certain amount of time. An alternative approach called
file synchronization, implemented in the rsync tool [38] and
used for web access in [37], requires no data at all to be
maintained at the proxy. In fact, this approach is related
to value-based caching, and we will discuss this relationship
and a potential application. In a nutshell, delta compression
requires full knowledge of reference data, while value-based
caching works with knowledge of only a few hash values and
file synchronization requires no knowledge of the reference
data at all.

3. OUR CONTRIBUTIONS
In this paper, we describe and evaluate techniques for im-

proving the efficiency of content delivery over slow links in
a client-proxy environment. While our techniques are opti-
mized for web access over dialup links, they are also poten-
tially applicable to other scenarios. Our main contributions
are as follows:

(1) We propose a hierarchical substring caching technique
that improves and generalizes the value-based caching
technique of [29]. The technique introduces a natural
multi-resolution approach to cached content, where re-
cently seen content is remembered in detail while items
seen some time ago are only remembered at very coarse
granularity.

(2) We describe several additional techniques for reducing
overheads in our approach.

(3) We perform an evaluation of the techniques using a
large set of traces that we collected from our institution
over several weeks.

(4) We perform an experimental comparison of our ap-
proach with delta compression, and propose a hybrid
algorithm that improves on both approaches.

4. HIERARCHICAL SUBSTRING CACHING
We now describe hierarchical substring caching as a gener-

alization of value-based caching. Recall that in value-based
caching, files are partitioned into blocks in a content-based
manner, with the average block size determined by the pa-
rameter b in the algorithm. In [29], an expected block size of
2048 is used, and it is natural to ask if significant additional
savings could be obtained with a smaller block size. This
question was answered in [29] in the negative based on an
experimental evaluation.

We follow a slightly different approach. Instead of sim-
ply decreasing the block size, we propose to maintain blocks
of different sizes on multiple levels. While this basic idea
is rather simple, it leads to some interesting perspectives
and requires several non-trivial optimizations to minimize
overhead. In particular, we define a hierarchical k-level
partitioning of a file, which is determined by parameters
b0, b1, . . . , bk−1 where bi−1 is a multiple of bi. (Usually, we
choose the bi as powers of two.) We divide a file again by
sliding a window of a certain size over it, and declare a level i
boundary whenever the window content hashes to 0 mod bi.
Thus, a level i boundary is also a level i + 1 boundary, re-
sulting in a hierarchical partitioning of the file. A simple
example of a two-level partitioning is shown in Figure 4.1.

abacabcadabcbbdadacbacddaccb ...

xxx1562057121245623037214652 ...  

hash

level 1

level 0block 1 block 2 block 3

block 2 block 3block 1 block 4 block 5

Figure 4.1: A simple example of hierarchical partition-

ing with two levels. A window of size four bytes is moved

over the file and at each position a hash h() of the window

is computed, with hash values in the range {0, . . . , 7}. In

this case, a level 0 block ends whenever we have a hash

value of 0 mod 8 and a level 1 block ends whenever we

have a hash value of 0 mod 4. Note that not every level

0 block is partitioned into two level 1 blocks, but some

may be partitioned into more than two and some into

only one level 1 block.

Such a hierarchical partitioning leads to a natural multi-
resolution view of caching. Hashes at the highest level k− 1
allow us to exploit very fine-grain matches with small strings
that have previously appeared in other files, while hashes at
the lowest level 0 allow succinct referencing of very large
matches. Of course, since we have to retain a hash value for
each block, the blocks at level k−1 will take up a dispropor-
tionate amount of the caching space at the proxy. This in
turns leads to these hashes being evicted fairly soon, while
the relatively few hashes at level 0 are retained for an ex-
tended period of time. Thus, the cache maintains a multi-
resolution view of previously seen data, with more fine-
grained knowledge of recently seen data and a very coarse-
grained view of much older data. An interesting question
that we will address later is how long hashes at each level
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should be kept, or equivalently, how much space should be
allocated to each level of blocks.

Given this view, one might be tempted to first insert only
the level k − 1 hashes into the cache, and to then combine
several level i hashes into one level i − 1 hash at eviction
time. However, this makes it more expensive to express long
matches in the beginning, and it also requires overhead to
remember which level i hashes make up one level i−1 hash.
For this reason, we immediately insert hashes for all levels.
This would result in a factor of 2 overhead in space versus
only inserting level k − 1 hashes, in the case where bi =
2 ∗ bi+1 for all i and where all entries are kept for the same
amount of time, but actually results in much lower overhead
since entries in higher levels are evicted much sooner.

Before proceeding, we discuss the computational cost of
hierarchical substring caching. During the process of identi-
fying the block boundaries, the algorithm checks if the small
window hashes to 0 mod bi, starting from the highest level
(smallest blocks). If so, we then check whether this is also a
boundary for the next level, until either a non-zero modbj

hash is obtained or level 0 is reached. Thus, hierarchical
substring caching introduces no significant extra CPU cost
to identify the block boundaries, compared to value-based
caching. On the other hand, at first glance it seems that
the overhead for computing the hash values of the blocks
themselves increases with the number of levels. However,
it is possible to achieve better performance as follows: The
algorithm computes the hashes only for the highest level
(smallest) blocks using a Karp-Rabin hash function instead
of MD5. Since Karp-Rabin hash functions are composable,
the parent hash value can be computed from those of the
children. Thus, the overhead for computing the hash val-
ues is in fact independent of the number of levels. Overall,
performance similar to that of value-based caching can be
achieved by hierarchical substring caching. In our current
implementation, we use an MD5 hash function for conve-
nience, but one could substitute this with a faster one to
improve the computational performance.

Next, we describe the data sets that we used and our
implementation of the proxy and client components. We
then first evaluate a very basic version of our hierarchical
substring caching approach. Then we present and evaluate
various optimizations which obtain significant improvements
over the basic version.

4.1 Traces and Experimental Methodology
For our experimental evaluation, we collected live web

access traces of several static IP subnets with single-user
workstations within our university network. We collected
these traces using tcpdump [17] from November 7, 2003 to
November 21, 2003, with several short interruptions. In-
dividual responses were then reconstructed from the raw
packet traces using tcpflow [12]. In our evaluation, we ig-
nored responses that are already encoded (e.g., compressed
with gzip) for technical reasons, though these were only a
very small fraction of the total data. We also excluded me-
dia content (i.e., audio and video), software downloads, and
any responses larger than 1 MB. It is expected that for real
low-bandwidth clients, such requests would make up a far
smaller percentage of the total traffic than in our LAN-based
campus environment.

The total size of the remaining web traffic was 2.13 GB,
which belonged to 67 clients with various access patterns.

Around 737 MB of this content consists of HTML and text
responses (any mime type that contains the string text),
1.08 GB was image content (any mime type that contains
the string image), and the remaining content was in various
application formats (e.g., pdf, ps, doc). There were a total
of 401168 responses with 134 mime types.

In the following, we first focus on the HTML and text
responses and evaluate the benefits of various techniques
by considering the bandwidth savings that are achieved on
this data. To efficiently deal with image data, it is neces-
sary to employ appropriate transcoding techniques as dis-
cussed, e.g., in [8]. Such transcoding can, for example, be
implemented by converting images to the jpeg2000 format
[1] and reducing image quality appropriately. We evaluate
the potential benefits of combinations of substring caching
and image transcoding in Section 5.

4.2 Proxy Server Cache Implementation
As described earlier, the proxy server moves a small win-

dow over the requested content to define the block bound-
aries for various levels. Each identified block is then rep-
resented in the substring cache by a small entry consisting
of the following items: the MD5 hash value of the block, a
timestamp (a sequence number that defines a relative order-
ing), the level of the block, and the ID of the client that the
block was sent to. Although the length of an MD5 hash is 16
bytes, we used only 8 bytes in our implementation. We in-
vestigate the effect of this decision below, and also describe
a recovery scheme for possible collisions on the client side –
though these are very unlikely even with 8-byte hashes.

When the proxy cache is full, entries are evicted based
on a Least Recently Used (LRU) policy. Since we have a
hierarchy of multiple levels, we assign a certain fraction of
the available space to each level and use an LRU policy for
each level separately (the default is to give the same space
to all levels). For efficiency reasons, whenever the cache is
full we evict some small fraction of the entries in the cache
(usually the oldest 10%) at once, instead of evicting single
entries. Note that there is no fixed allocation of space to
each client, but the cache is shared among all clients. Thus,
an active client would usually have more entries in the proxy
cache than a less active client. In Section 4.5, we revisit and
evaluate this design decision.

4.3 Performance of Basic Hierarchical Scheme
We now look at the performance of a basic implementation

of Hierarchical Substring Caching. In this basic scheme, the
proxy uses the following approach to encode the requested
content efficiently before sending it to the client. As the
block boundaries are identified, the proxy server performs
lookups into the cache to determine matched and unmatched
blocks. Matched blocks are represented efficiently by an
array of 8-byte MD5 hash values, one per block. Since we
have various levels of blocks, the proxy server always looks
for the largest possible matches (i.e., matches on the lowest
possible level), to minimize the number of hashes that are
sent. The remaining unmatched blocks are concatenated to
form the unmatched literals, which are then compressed with
gzip. To allow the client to reconstruct the response from
the received byte stream, the proxy server also sends the
total size of the compressed unmatched literals, the number
of hashes in the array, and the byte offsets of the matched
blocks in the response. The first two items are encoded with
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a simple variable-byte code, while the array of byte offsets
is encoded using Golomb coding (see, e.g., [39]) of the offset
from the end of the previous match.

Note that with this scheme, data can be streamed to the
client as it is received by the proxy, except that the proxy
server needs to wait until the next level 0 boundary is en-
countered before sending the data on. Choosing a smaller
expected size for the lowest level (largest block) might thus
result in better streaming characteristics. For every re-
sponse, the proxy server also sends a 16-byte MD5 of the
entire content that allows the client to check the correctness
of the response. Thus, any collisions due to the use of 8-byte
MD5 hashes is detected by the client, who can then request
the content again from the proxy. (On our data, we did not
observe any collisions due to the use of 8-byte hashes.)

In Figure 4.2, we compare the bandwidth usage of this
basic implementation of hierarchical substring caching to
value-based caching from [29]. We use a proxy cache of 10
MB for our data set of 737 MB of content. We show results
for value-based caching with 8- and 16-byte hashes, and for
simple gzip. Consistent with [29], value-based caching with
16-byte hashes benefits only slightly from block sizes less
than 2048 bytes. Some additional benefits are obtained by
using 8-byte hashes with block size 256 bytes, but perfor-
mance degrades for block sizes less than 128 bytes. The
basic hierarchical approach already obtains significant addi-
tional improvements over value-based caching, particularly
with 5 or more levels and minimum expected block sizes of
128 or less. As expected, gzip, which is independent of block
size, performs worst.

A clarification concerning our use of the term expected

block size for the parameter bi in the definition of a hier-
archical partitioning. Due to the enforced minimum and
maximum block sizes (20 and 8192 bytes), the actual ex-
pected block sizes even under random content are slightly
different. At the low end, bi = 16 really results in an average
block size close to 16 + 20 bytes. For a real block size of 16
bytes, no savings over gzip would be obtained by replacing
it, say, by a hash of 8 bytes.
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Figure 4.2: Bandwidth usage of value-based caching and

a basic version of hierarchical substring caching, for var-

ious expected block sizes. For value-based caching, there

is only one level. For hierarchical substring caching the

lowest level has an expected block size of 2048 and we

vary the block size in the highest level from 1024 to 16.

Prefix Matches Lookups >10K Gain

13 4.65346 637121.67 77180 6.88%
14 2.91242 9694.25 18429 6.75%
15 2.05026 240.77 1213 6.63%
16 1.61506 18.72 18 6.51%
17 1.39754 4.94 5 6.39%
18 1.28594 3.13 4 6.27%

Table 4.1: Evaluation of the average number of matches,

number of lookups, and compression gains using various

prefix lengths, for k = 8 and a postfix length of 32 bits.

4.4 Optimizations over the Basic Scheme
Next, we describe and evaluate three optimizations over

the basic hierarchical caching technique in Figure 4.2, which
result in significant additional improvements.

Shorter Hashes with XOR: In the first optimization,
the proxy server partitions each 8-byte hash into a prefix
of a certain size (say, the first 20 bits of each hash, though
the best choice depends on the size of the cache), and a
postfix with the rest of the hash (in practice, the next 32 bits
following the prefix usually suffice). Instead of sending the
8-byte MD5 hash value for each matched block, the proxy
now sends only the prefix of each hash. In addition, for
every batch of k (say k = 8) matched blocks, the proxy
server computes and sends the XOR of the k postfixes. The
client, upon receiving the hash data, uses an ordered data
structure to identify all blocks whose MD5 hashes start with
the received prefixes. If there is only a single match for each
prefix, the client checks the validity of the matches using
the XOR data. If one or more of the prefixes result in more
than one match, then the client resolves this ambiguity with
the help of the XOR bits, as follows. The client checks
every combination of matches for the k − 1 prefixes with
the fewest numbers of matches, and for each combination
uses the postfixes of the matches to determine the postfix
of the k-th hash that is needed to obtain the received XOR.
Then a lookup is performed to see if any of the matches
of the k-th prefix have the required postfix. If any lookup
is successful, then we have found the right combination of
matches. Thus, the number of lookups performed is the
product of the number of matches for the k−1 prefixes with
the fewest numbers of matches. In the following, we look at
how to choose the size of the prefix to keep the number of
lookups at a reasonable level. Note that these lookups are
only performed at the client, which usually has ample CPU
power to decode data arriving at dialup speed. In contrast,
the proxy does not need to maintain and query an ordered
data structure on the hash values, but can use a faster hash-
based or similar organization.

In Table 4.1, we evaluate this scheme for an 8-level hier-
archy with expected block sizes from 2048 to 16 bytes for
various prefix lengths. The second column shows the av-
erage number of matches observed for each hash, and the
third column shows the average number of lookups per batch
that are performed to resolve collisions in the prefixes. The
fourth column shows the number of batches that resulted in
more than 10, 000 lookups, and the last column shows the
overall improvement in compression over the basic hierar-
chical scheme. We use k = 8 and a postfix length of 32 bits,
which works well in practice. We counted a total of 281, 030
XOR batches, and the cache contained up to 309, 341 entries
belonging to several dozen clients.
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As one would expect, choosing a size of the prefix much
smaller than the logarithm of the client cache size results
in a large number of collisions. (In addition, performing
many lookups also requires a larger postfix to achieve the
same degree of certainty about the correctness of the match.)
Choosing a prefix size close to the logarithm of the proxy
cache size and thus slightly larger than the logarithm of the
largest client cache size, say 17 or 18 in this case, gives a
moderate number of lookups with good gains in compres-
sion. In our subsequent experiments, the proxy server sends
a 17-bit prefix for each match, which works well for our
range of cache sizes. Note that in this setting the likelihood
of a false positive collision is slightly higher than with true
8-byte hashes. However, choosing slightly more than 32 bits
for the XOR would remedy this problem at little extra cost.

Using Deltas for Literals: Applying gzip to compress
the literal data allows us to exploit repeated patterns within
the literals. However, matched data and unmatched liter-
als also share many repeated patterns since they are part of
the same content. Thus, if we compress unmatched literals
by themselves, we fail to exploit this redundancy between
literals and matched data. To resolve this issue, we use a
delta compressor to compress the literal data. Recall that a
delta compressor encodes a target file with respect to one or
more reference files, by essentially encoding how to recon-
struct the target file from the reference files. In this case, we
concatenate the matched blocks into a reference file that is
used to encode the literals using the zdelta delta compressor
[35]. Note that due to limitations in the current version of
zdelta, we have to wait until we have processed the entire
file before running the delta compressor. However, this is
not a fundamental limitation of the approach, and could be
resolved with a delta compressor that allows both reference
and target data to be applied in a streaming manner. Note
that a modification to gzip proposed in [36] could also be
used instead.

Using Overlapping Blocks: Recall that a block bound-
ary occurs whenever a small window of a certain size hashes
to 0 mod b. Under the definition in [29], a block contains
the small window that defines its end, but not the one that
defines its beginning. However, any match between two
blocks is likely to extend to this small window, since both
blocks have to be preceded by a small window that results
in a boundary. Thus, we propose to redefine the blocks to
contain the small windows on both sides. As illustrated
in Figure 4.3, every block now contains both of the small
windows, and thus consecutive blocks on the same level are
overlapping. While this may result in some missed matches
(if two blocks are preceded by different boundary windows
to the left under the old definition), there are two advan-
tages. First, while we miss a few matches, we are also able
to match additional literals when an unmatched block is fol-
lowed by a matched block. In particular, on our trace the
total number of matches dropped by about 4.5%, mostly due
to missed small matches, but the total size of the matched
literals stayed almost the same (minus 0.5%). Thus, fewer
bits are needed to communicate the matches, and we see
overall bandwidth savings of about 1.75%.

The second advantage of using overlapping blocks is that
it allows the proxy server to send less bits for consecutive
matched blocks. Recall that each block is represented by
a 64-bit MD5 hash value in the cache. Now we redefine
this representation as follows. For each block, we replace

xxx1562057121245623037214652 ...

abacabcadabcbbdadacbacddaccb ...

block 2

block 1

block 3

block 4
block 3 block 5

level 1
block 2

block 1

hash hash hash hash

level 0

Figure 4.3: Overlapping block boundaries.

the first, say, 8 bits of its MD5 with a hash of the small
window on the left edge of the block (the starting window).
We keep the other 56 bits from the MD5 of the entire block.
For any two consecutive matched blocks in the response,
we can now skip the transmission of the initial 8 bits of
the second hash since these bits can be computed by the
client from the previous block. However, we might expect
more collisions since the small initial window is likely to be
repeated occasionally in the content, and the XOR collision
resolution also needs to be modified since ambiguities in
the first match in a batch now result in different hashes for
subsequent blocks. We tried various choices for the number
of initial bits that are taken from the starting window hash,
and found good performance for 8 bits with a prefix of 17
bits as before. The two optimizations, when combined, yield
an improvement of about 3%, though the second one comes
at some cost in code complexity that may not always be
worthwhile.
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Figure 4.4: Total bandwidth use of hierarchical sub-

string caching with optimizations.

Performance Evaluation of Optimizations: In Fig-
ure 4.4, we show the benefits obtained by these optimiza-
tions on our trace. We show from top to bottom the per-
formance of gzip, value-based caching with 8-byte hashes,
the basic hierarchical scheme from Figure 4.2, and three op-
timized codes. The optimizations from top to bottom are
(i) the XOR technique, (ii) use of XOR and zdelta, and (iii)
XOR, zdelta, and overlapping blocks. As we see, the opti-
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α 1 1.25 1.5 1.75 2 2.25 2.5

L0 21.29 22.51 23.14 23.81 24.40 24.74 25.05

L1 11.25 11.57 12.09 12.28 12.23 12.35 12.41

L2 12.48 12.85 13.14 13.29 13.49 13.62 13.71

L3 13.84 14.13 14.16 14.18 14.24 14.25 14.22

L4 12.28 11.91 11.67 11.46 11.28 11.16 11.09

L5 10.52 10.11 9.74 9.53 9.30 9.15 9.05

L6 9.42 8.91 8.50 8.17 8.02 7.87 7.78

L7 8.92 8.01 7.56 7.28 7.04 6.86 6.69

Size 90.11 88.85 86.73 85.46 84.87 84.65 84.88

Table 4.2: Total bandwidth use in MB (bottom) and

percentage contribution of each block level to the total

matched data, for various values of α.

mizations give an additional reduction of almost 15% per-
cent in bandwidth use over the basic hierarchical scheme.
Comparing the best optimized result to gzip we get an im-
provement from 163 to 84 MB (48%), and comparing to the
best setting value-based caching, we get an improvement
from 112 to 84 MB of bandwidth usage (25%).

4.5 Assignment of Proxy Cache Space
Next we evaluate the proper assignment of cache space to

the different levels of blocks. We note that each assignment
corresponds to an expected time that an entry will remain in
the cache under some simplifying assumptions. For example,
if we assign the same amount of space to all levels, then a
naive view would be that the entries for the largest blocks
might stay in the cache about twice as long as the entries for
the next level, since there are only half as many of the larger
blocks that are produced. In Table 4.2, we look at the effect
of different memory allocation policies for the levels of the
cache. In each policy, space is allocated such that an entry
at level i is expected to stay by a factor of α longer in the
cache than an entry at level i + 1 under this naive view. As
we see, it is better to allow larger blocks to stay in the cache
for a longer period of time, but the precise choice of α does
not seem to make a huge difference and our default choice
of α = 2.0 (same space for each level) is almost optimal.

There are two benefits in starting the lowest level at a
fairly large expected block size, such as 2 KB in our case.
First, these entries allow us to transmit large matched ar-
eas in the content more efficiently, with fewer hashes. The
second benefit is due to the fact that we only have a limited
cache size. Thus, by using a small amount of space to keep
larger blocks for a longer period of time, we can identify
matches that would have already been evicted if they had
been stored only as smaller blocks.

However, one could argue that it might be better to get rid
of the lowest levels (current level 0), and to only use 7 levels
from 1024 down to 16 bytes, or 6 levels from 512 down to 16
bytes, and to give more space to each remaining level. We
analyze this issue in Figure 4.5, where we vary the expected
block size from 1024 to 32 for the lowest level. In the figure,
we present the resulting changes in bandwidth consumption
compared to our default setting of 8 levels from 2048 to 16
bytes. In each case the same amount of total cache space (10
MB) is divided evenly among the levels. As we see, there is
actually a slight benefit in using only 7 levels from 1024 to
16 bytes, but for initial block sizes of 256 or less there is a
significant cost in terms of missed matches due to evictions
(black bar) and additional encoding overhead due to more
hashes that need to be sent (grey bar).

1024 512 256 128 64 32
−2

0

2

4

6

8

10

12

14

16

Expected Block Size in Bytes

S
iz

e 
in

 M
B

Extra Missed Content Size
Additional Encoding Overhead

Figure 4.5: Performance with varying numbers of levels,

identified by largest expected block size. Black bars show

the size of the matched literals that would be missed

compared to an 8-level hierarchy starting at 2048-byte

block size, and grey bars show extra encoding overhead.

In Figure 4.6, we compare gzip, value-based caching, basic
hierarchical substring caching, and the optimized version on
different cache sizes from 1 to 20 MB. As we see, all of the
techniques already do quite well even on fairly moderate
proxy cache sizes; this is important since in a realistic dialup
scenario, each proxy will usually be responsible for a larger
number of active clients than in our trace of a few subnets.
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Figure 4.6: Comparison of schemes for various cache

sizes.

Shared Cache vs Fixed Memory Allocation: Recall
that in our default cache design, the space is shared among
all clients, thus allowing active clients to utilize a larger
share of the cache space. Another approach would be to
consider a client active as long as it has an entry in the
cache, or has made an access in the last x minutes, and
to assign equal space to all active clients. In Figure 4.7, we
compare these two designs and show the benefits of a shared
cache design over a fixed allocation for each client. As we
see in the figure, the shared cache design offers significant
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benefits to the most active users (the leftmost bars) while
not significantly impacting the less active users. Overall,
the shared allocation achieves about a 6.25% reduction in
bandwidth usage.
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Figure 4.7: Benefit of shared cache design over fixed

allocation. Clients are ordered from left to right by the

total amount of content that they retrieve, with the y-

axis showing the total bandwidth savings of the client

compared to a fixed allocation of cache space (a negative

value means a client would benefit from a fixed alloca-

tion).

5. COMPARISON TO DELTAS AND A
HYBRID

In this section, we compare our hierarchical scheme to
approaches based on delta compression, and then propose
a hybrid that unifies and improves on both approaches. As
shown in the previous section, compression improves when
the unmatched literals are delta compressed with respect to
the matched literals (as opposed to just using gzip). In the
context of web access, delta compression is also commonly
used to compress the requested pages with respect to previ-
ously transmitted similar pages. While several schemes limit
themselves to delta compression between different versions
of the same page [4, 24, 11, 23], others attempt to select the
most similar reference file among all cached pages [7, 30].
In the following, we take the latter approach, which is more
appropriate when files can only be cached for a fairly short
amount of time as in our case where many clients share the
proxy.

Thus, a limited amount of cache space is used at the proxy
to store recently accessed pages for future use as reference
files. We then implemented two techniques for identifying
good reference files. The first technique is based on the
sampling approach for estimating file similarities proposed
by Broder in [6], also used in [30] and referred to as shingles

in Figure 5.1. In our second technique, we split the cache
into two parts, one for storing cached files, and one for hier-
archical substring caching as previously described. However,
we now use any block matches that we encounter to identify
appropriate reference files. For each entry in the substring
cache, we keep a list of pointers to those files in the file cache
that contain this block. The proxy then follows the pointers

whenever a match is found to identify the file in the file cache
that contains the largest number of matched literals. This
file is then used as a reference file for delta compression; the
technique is referred to as delta in Figure 5.1.

From Figure 5.1, we see that the first technique, shin-

gles, does slightly better than the second technique. Both
techniques perform better than value-based caching for all
cache sizes, but do not perform as well as our hierarchical
substring caching technique.

Also shown in the figure is a hybrid technique, called Hi-
erarchical Substring Caching with Delta Compression and
labeled HSC-delta, that outperforms all other techniques
and works as follows. As in delta, the proxy server splits
its cache space into a file cache and a substring cache and
uses block matches to identify the best reference file in its
file cache. Then the proxy determines any matches in files
other than the best reference file, and transmits them to the
client through the use of hashes, as in Hierarchical Substring
Caching. The remainder of the file, including the matches
found in the best reference file, are then delta compressed
with respect to the best reference file and a second reference
file constructed from the matches found in other files. (The
zdelta compressor supports up to 4 reference files.) This im-
proves on Hierarchical Substring Caching by using an opti-
mized delta compressor (with Huffman-coded offsets instead
of inefficient hash values) to identify matched regions in the
best reference file, which contains most of the matches.
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Figure 5.1: Comparison of delta encoding and substring

caching

In order to find a good ratio between the sizes of the file
cache and the substring cache, we experimented with vari-
ous partitioning strategies. As shown in Table 5.1, devoting
just a quarter of the cache to the file cache is enough; using
a larger fraction decreases the benefits. The table also shows
how much of the matched literals were available in the best
reference file. As we see, for the best setting almost 25%
of the matched literals were not contained in the best ref-
erence file; this makes HSC-delta perform better than any
technique based only on deltas.

The cache sizes used for file caching may seem rather small
compared to the sizes used in studies on web caching. This
is so for several reasons. First, for performance reasons it
is highly desirable to have the file cache in main memory,
since otherwise each delta compression step requires an ex-
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1/4 1/3 1/2 2/3 3/4

Encoding 77.99 78.27 79.17 80.47 81.42

Ref. Hit 257.68 264.05 271.53 274.87 275.46

Other Hit 62.33 59.57 52.85 45.80 41.52

Total Hit 320.01 323.62 324.38 320.67 316.98

Table 5.1: Total encoding size in MB with various allo-

cations of space for the file cache, with total cache size 10

MB. The second row shows the size of the matched lit-

erals contained in the best reference file, while the third

row shows the size of the matched literals only available

in other files.

tra disk access, resulting in a potential bottleneck if many
clients are currently connected to the proxy. Secondly, as
shown in [30] and confirmed by the above numbers, signif-
icant benefits are available with delta compression even if
files are only retained for a fairly short period of time, such
as a few minutes [30].

In this case, most of the benefit comes from similarities
between the requested page and other pages from the same
site that have just been visited. Capturing similarities be-
tween different versions of the same page visited several days
or weeks apart would either require a very large cache on
disk, or would possibly be better handled using hierarchi-
cal substring caching or file synchronization techniques. In
particular, if a page is revisited after all the block hashes
from the previous visit have already been evicted from the
proxy, but the client still has the old page in his disk cache,
then there is a very simple and elegant way to utilize file
synchronization techniques similar to rsync in this context.
The client can simply partition the old version of the page
into blocks, say of expected size 512, 1024, or 2048 bytes,
and include the hashes of these blocks in its HTTP request.
The proxy then intercepts these hashes, inserts them into
its substring cache, and processes the new file in the normal
way as it arrives.

5.1 Impact of Images and Image Transcoding
As mentioned earlier, significant speedups over dialup links

can be obtained by employing transcoding techniques on
image files. On the other hand, if no transcoding is per-
formed, then our techniques will be limited in benefit, as
they are primarily suitable for the text/html fraction of the
web traffic. In Figure 5.2, we show the benefits of our HSC-
delta hybrid on both text/html and image data when com-
bined with image transcoding techniques. For the 4 bars
on the left we assume that transcoding decreases image file
size by a factor of 2 on average, while for the bars on the
right we assume a factor of 3. In each group, the left-
most bar represent the bandwidth usage when all images
are transcoded to jpeg2000 format without any quality loss
(but often with a slight decrease in size due to better com-
pression in jpeg2000), and text content is compressed sim-
ply with gzip. The second bars show the bandwidth usage
when duplicate files are identified and encoded by 8-byte
MD5 hashes (a simple form of hash-based alias detection).
The third bars assume transcoding techniques on images and
gzip on text/html, while the last bars assume transcoding
on images and the HSC-delta hybrid on text/html. As we
see, any approach that focuses on one type of data, such
as text/html, has to be combined with techniques for other
data types in order to make a real impact in performance.
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Figure 5.2: Combined benefits of image transcoding and

HSC-delta on our traces.

6. RELATED WORK
Much of the relevant work was already reviewed in Sec-

tions 1 and 2, and hence we only briefly list here the most
closely related results.

Our work is most closely related to, and an extension of,
the value-based caching technique in [29], which itself em-
ploys Karp-Rabin fingerprints as introduced in [18]. Tech-
niques similar to value-based caching have also recently been
used by researchers in the networking and OS communities
[32, 25, 10]. We are unaware of any previous hierarchical
uses of these block partitioning techniques.

Delta compression tools and algorithms are described in
[16, 3, 35, 20, 22, 33]. Delta compression for web access
has been studied in [4, 24, 11, 23, 7, 30, 28, 26]. The first
four papers assume that deltas are only performed between
different versions of the same page (URL), while the last
two assume that good reference files are identified by the
content provider. Work in [7, 30] addressed the problem of
how to select reference files from all possible files. We fol-
low the main conclusions from that previous work by using
simple heuristics to identify reference files and limiting delta
compression to very recent reference files. While [24] eval-
uates delta compression between different versions of the
same page over a large set of traces, we are not aware of
any previous evaluation of delta compression with arbitrary
reference files over longer periods of time.

The rsync file synchronization tool is described in [38].
There are several recent approaches to improve the band-
width efficiency of file synchronization [9, 21, 27, 34], but all
these approaches use multiple roundtrips and are thus not
suitable for the relatively small file sizes encountered in web
access. The utility of rsync for web access was studied in
[37, 30]. One conclusion from that work is that file synchro-
nization works best for different versions of the same page.
In particular, file synchronization allows efficient revisiting
of slightly changed pages even after a long period of time,
without having to store anything at the proxy.

7. CONCLUDING REMARKS
While we have collected a reasonably large trace and run

detailed experiments, it would be beneficial to have our re-
sults confirmed on a larger user population, and to conduct
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experiments on user-perceived delays using the dummynet
tool. It would also be interesting to measure the throughput
of the proxy under load once the implementation is fully op-
timized. As discussed in Section 4, since all the fingerprint-
ing and compression steps in our approach are simple, we
expect throughputs of multiple MB/s. For mobile clients, we
are confident that with the right parameter settings, these
devices can also benefit from the techniques described.

In terms of open research questions, we see a lot of oppor-
tunities for future research on general bandwidth-efficient
communication primitives, such as better file [38] and data
[2] synchronization algorithms, transparent improvements at
the networking level [32], and applications of such primi-
tives, e.g., in peer-to-peer systems.
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