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ABSTRACT
The Semantic Web consists of many RDF graphs nameable by
URIs. This paper extends the syntax and semantics of RDF to cover
such Named Graphs. This enables RDF statements that describe
graphs, which is beneficial in many Semantic Web application ar-
eas. As a case study, we explore the application area of Semantic
Web publishing: Named Graphs allow publishers to communicate
assertional intent, and to sign their graphs; information consumers
can evaluate specific graphs using task-specific trust policies, and
act on information from those Named Graphs that they accept.
Graphs are trusted depending on: their content; information about
the graph; and the task the user is performing. The extension of
RDF to Named Graphs provides a formally defined framework to
be a foundation for the Semantic Web trust layer.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence ]: Knowledge Representation Formal-
isms and Methods; K.6.5 [Management of Computing and In-
formation Systems]: Security and Protection; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval—selec-
tion process

General Terms
Languages, Security

Keywords
RDF, Semantic Web, Provenance, Trust

1. INTRODUCTION
A simplified view of the Semantic Web is a collection of web

retrievable RDF documents, each containing an RDF graph. The
RDF Recommendation [4, 12, 26, 32], explains the meaning of any
one graph, and how to merge a set of graphs into one, but does
not provide suitable mechanisms for talking about graphs or rela-
tions between graphs. The ability to express metainformation about
graphs is required for:

Data syndication systems need to keep track of provenance infor-
mation, and provenance chains.

Restricting information usage Information providers might want
to attach information about intellectual property rights or their
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privacy preferences to graphs in order to restrict the usage of
published information [18, 34].

Access control A triple store may wish to allow fine-grain access
control, which appears as metadata concerning the graphs in
the store [28].

Signing RDF graphs As discussed in [13], it is necessary to keep
the graph that has been signed distinct from the signature,
and other metadata concerning the signing, which may be
kept in a second graph.

Stating propositional attitudes such as modalities and beliefs [27].
Scoping assertions and logicwhere logical relationships between

graphs have to be captured [6, 25, 31].
Ontology versioning and evolution OWL [19] provides various

properties to express metadata about ontologies. In OWL
Full, these ontologies are RDF graphs. Ontology evolution
is discussed in [17].

RDF reification has well-known problems in addressing these
use cases as previously discussed in [16]. To avoid these problems
several authors propose quads [3, 20, 28, 33], consisting of an RDF
triple and a further URIref or blank node or ID. The proposals vary
widely in the semantic of the fourth element, using it to refer to in-
formation sources, to model IDs or statement IDs or more generally
to ‘contexts’.

We propose a general and simple variation on RDF, callednamed
RDF graphs. A Named Graph is an RDF graph which is assigned
a name in the form of a URIref. The name of a graph may occur
either in the graph itself, in other graphs, or not at all. Graphs may
share URIrefs but not blank nodes.

Named Graphs can be seen as a reformulation of quads in which
the fourth element’s distinct syntactic and semantic properties are
clearly distinguished, and the relationship to RDF’s triples, abstract
syntax and semantics is clearer.

As in both [37, 40] Named Graphs are treated as first class ob-
jects. The key contribution of this paper over and above such earlier
work is the observation that the single feature, of graph naming, is
the crucial one, but that the complex semantic theories of [37, 40]
principally act as a barrier to deployment.

Named Graphs are a deliberately small step on top of the RDF
and OWL Recommendations. This allows their use with tools built
as implementing those recommendations, in a backward compati-
ble way, with little or no code modifications.

The first half of the paper covers: the abstract and concrete syn-
taxes for Named Graphs; their semantics and the relationship with
RDF and OWL; the relationship with TRIPLE [40] and with Guha
and Fikes’ contexts [37]; and query languages for Named Graphs,
including SPARQL [36].
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The second half describes how Named Graphs can be used for
Semantic Web publishing, looking in particular on provenance track-
ing and how it interacts with the choices consumers of Semantic
Web information make about which information to trust. We pro-
vide a vocabulary for Semantic Web publishing with its formal se-
mantics. The vocabulary includes support for digital signatures and
addresses performative acts, such as asserting RDF.

2. ABSTRACT SYNTAX AND SEMANTICS
RDF syntax is based on a mathematical abstraction: an RDF

graph is defined as a set of triples. These graphs are stored in doc-
uments which can be retrieved from URIs on the Web. Often these
URIs are also used as a name for the graph, for example with an
owl:imports . To avoid confusion between these two usages
we distinguish between Named Graphs and the RDF graph that the
Named Graph encodes or represents. A Named Graph is an entity
with two functionsnameand rdfgraph defined on it which deter-
mine respectively its name, which is a URI, and the RDF graph
that it encodes or represents. These functions assign a unique name
and RDF graph to each Named Graph, but Named Graphs may have
other properties.

More formally, letU be the set of all URIreferences,B an infi-
nite set of RDF blank nodes, andL the set of all legal RDF literals
(all three sets as defined in [32]);U , B andL are pairwise disjoint;
let V = U∪B∪L be the set ofnodes; then the setT = V ×U×V
is the set of all RDF triples.1 The set of RDF graphsG is the power
set ofT . A Named Graph is a pairng = (n, g) with n in U andg
in G. We writename(ng) = n andrdfgraph(ng) = g. To enforce
the blank node scoping rules ([26]) we make the global assump-
tion that blank nodes cannot be shared between different Named
Graphs, that is, ifng andng′ are different Named Graphs then the
sets of blank nodes which occur in triples inrdfgraph(ng) and in
rdfgraph(ng′) are disjoint.

All of the above definitions may be relativized to a particular set
of URIrefs, or to a particular set of Named Graphs. Any set of
Named Graphs can be thought of as a partial function fromU into
the power set ofT .

3. CONCRETE SYNTAXES
A concrete syntax for Named Graphs has to exhibit the name, the

graph and the association between them. We offer three concrete
syntaxes: TriX and RDF/XML both based on XML; and TriG as a
compact plain text format.

The TriX [16] serialization is an XML format which corresponds
fairly directly with the abstract syntax, allowing the effective use of
generic XML tools such as XSLT, XQuery, while providing syntax
extensibility using XSLT. TriX is defined with a short DTD, and
also an XML Schema.

In this paper we use TriG as a compact and readable alternative to
TriX. TriG is a variation of Turtle [5] which extends that notation
by using ‘{’ and ‘}’ to group triples into multiple graphs, and to
precede each by the name of that graph. The following TriG doc-
ument contains two graphs. The first graph contains information
about itself. The second graph refers to the first one (namespace
prefix definitions omitted).

:G1 { _:Monica ex:name "Monica Murphy" .
_:Monica ex:email

<mailto:monica@murphy.org> .
:G1 pr:disallowedUsage pr:Marketing }

1We have removed the legacy constraint that a literal cannot be the
subject of a triple.

:G2 { :G1 ex:author :Chris .
:G1 ex:date "2003-09-03"ˆˆxsd:date }

Named Graphs are backward compatible with RDF. A collection
of RDF/XML [4] documents on the Web map naturally into the
abstract syntax, by using the first xml:base declaration in the doc-
ument or the URL from which an RDF/XML file is retrieved as a
name for the graph given by the RDF/XML file. Using RDF/XML
has disadvantages:

• The set of Named Graphs is in many documents rather than
one.
• The known constraints and limitations of RDF/XML apply.

For instance, it is not possible to serialize graphs with certain
predicate URIs, nor is it possible to use literals as subjects.
• The URI at which an RDF/XML document is published is

used for three different purposes: as a retrieval address, with
an operational semantics; as a means of identifying the doc-
ument; and as a means of identifying the graph described by
the document. There is potential for confusion between these
three uses.

None of these disadvantages is present in TriX and TriG. In bal-
ance, the major advantage of using RDF/XML is the deployed base,
and current technology.

4. THE SEMANTICS OF NAMED GRAPHS
The semantics of graph naming are a simple semantic extension

of the RDF(S) semantics: we will say that an RDF(S) interpreta-
tion I (as in [26])conformswith a set of Named GraphsN when:
For every Named Graphng ∈ N , name(ng) is in the vocabulary
of I and I(name(ng)) = ng Note that the Named Graph itself,
rather than the RDF graph it intuitively ‘names’, is the denota-
tion of the name. We consider the RDF graph to be related to the
Named Graph in a way analogous to that in which a class exten-
sion is related to a class in RDFS. This intensional (c.f. [26]) style
of modelling allows for distinctions between several copies of a
single RDF graph (with distinct names) and avoids pitfalls arising
from accidental identification of similar Named Graphs.

The RDF documentation [32] defines a notion of graph equiva-
lence, which treats two RDF graphs which differ only in the iden-
tity of their blank nodes as being the ’same’ graph. We will make
a similar assumption, ignoring the mathematical details of ’renam-
ing’ functions; in practice, this amounts to permitting RDF proces-
sors to freely re-name any blank node identifiers when required in
order to maintain the no-sharing condition.

The intuitive meaning of a Named GraphG is the standard RDF
meaning [26] of its associated RDF graphrdfgraph(G), which we
will refer to as thegraph extension. Any assertions in RDF about
the graph structure of Named Graphs are understood to be referred
to these graph extensions, just as the meanings of the RDFS class
vocabulary are referred to relationships between the class exten-
sions. As an example of this meaning, we can define two proper-
tiesrdfg:subGraphOf andrdfg:equivalentGraph , with
semantics defined as follows:

〈f, g〉 is in IEXT(I(rdfg:subGraphOf ))
iff rdfgraph(f) is a subset ofrdfgraph(g)

where the subset holds in a manner performing any necessary blank
node renaming, as discussed above. Formally, the condition is that
there is a renaming mappingm on the blank nodes ofrdfgraph(f)
such that the RDF graphm(rdfgraph(f)) is a subset ofrdfgraph(g).

〈f, g〉 is in IEXT(I(rdfg:equivalentGraph ))
iff rdfgraph(f) = rdfgraph(g)
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where, again, identity is understood as renaming blank nodes as
appropriate.

We consider three further issues of detail in the relation between
Named Graphs and RDF and OWL: the open world assumption;
RDF reification, and OWL imports.

4.1 The Open World Assumption
Both RDF and OWL operate with the open world assumption.

RDF Concepts [32] says:

RDF is an open-world framework that allows anyone
to make statements about any resource. In general, it
is not assumed that complete information about any
resource is available.

The OWL Guide [41]:

OWL makes an open world assumption. That is, de-
scriptions of resources are not confined to a single file
or scope. While classC1 may be defined originally in
ontologyO1, it can be extended in other ontologies.

As is clear from these quotations, openness here means that a
description of a resource is considered to be open-ended. Actual
web objects such as files and RDF graphs can however be iden-
tified and rigidly named, so that the name uniquely identifies the
resource. Named Graphs utilize this ability to attach a name rigidly
to a graph. Thus the mapping between names and graphs fixes
the graph corresponding to a name in a rigid, non-extensible way.
Two different Web documents asserting different graphs named
by the same URI contradict one another. However, two different
graphs with different names may make statements about the same
resources. Thus the Named Graph framework facilitates the open
world of the Semantic Web; not only can different people make
different (hopefully complementary) statements about the same re-
source, but it is possible to keep these statements separate, and it
is possible to combine them. The choice of which of these two is
more appropriate is explicitly application specific.

Summarizing, if documentA contains a graphg namedu mak-
ing statements about a resourcer, a further documentB that is
consistent withA cannot use the nameu for a different graphg′.
However,B can contain a graphg′ namedu′ making further state-
ments aboutr. Thus the Named Graphs framework maintains the
open-world framework of RDF, but treats graph naming as a form
of rigid identification.

4.2 RDF Reification
A ‘reified statement’ [26] is a single RDF statement described

and identified by a URIreference. Within the framework of this pa-
per, it is natural to think of this as a Named Graph containing a sin-
gle triple. With this convention, the subject ofrdfg:subGraphOf
can be a reified triple, and the property can be used to assert that
a Named Graph contains a particular triple. This provides a use-
ful connection with the traditional use of reification and a potential
migration path. However, the semantics of a single triple graph
differ from the (lack of) semantics offered to a reified statement by
the RDF recommendation [26], better addressing traditional uses of
reificiation such as providing metadata about triples and quoting.

4.3 OWL Imports
OWL imports processing uses the URI object of anowl:im-

ports triple to locate an additional RDF/XML file to be included
in an ontology, as in [35], withK a collection of RDF graphs:

K is imports closed iff for every triple in any element
of K of the formx owl:imports u . thenK con-
tains a graph that is the result of the RDF processing

of the RDF/XML document, if any, accessible atu into
an RDF graph.

Using the Named Graphs it is more natural to use the name of
a graph as the object ofowl:imports ; so that the notion of im-
ports closure is applied to a collectionK of Named Graphs, and
the definition is reworded as:

K is imports closed iff for every triple in any element
of K of the formx owl:imports u . thenK con-
tains a graph that is namedu.

The URIu still may act as a locator, used to retrieve an RDF/XML
document that is parsed to give a graph namedu. The retrieval is
unnecessary if the graph is available through other means, e.g., a
cache (like with Jena’s OntDocumentManager), or a local copy, or
as part of a TriX document. There is a consistency question: do
two different copies of a Named Graph agree? This can perhaps be
resolved by phrasing it as: does a copy of a Named Graph agree
with the graph found by the retrieval action?

5. RELATED WORK
Previous authors of research work addressing the semantics of a

collection of documents on the Semantic Web have tended to have
rich theories for addressing the relationship between multiple con-
texts.

5.1 TRIPLE
TRIPLE [40] provides graphs named with resources, and a Horn

clause language for defining inferences etc., e.g.
@dfki:documents {

dfki:d_01_01 [
dc:title → "TRIPLE";
dc:creator → "Michail Sintek";
dc:creator → "Stefan Decker" ;
... ].

∀ S,D search(S,D) ←
D[dc:subject → S].

}
By mixing up the data representation (i.e., the Named Graph),

the implementation of core RDF and DAML-OIL semantics (through
Horn rules) and application semantics (through further Horn rules),
TRIPLE becomes, as they say a ‘novel query and transformation
language’. Horn rules are allowed to reference data from multiple
models. In as much as TRIPLE could be seen as mandating a sin-
gle approach to implementing RDF(S) and OWL semantics (Horn
rules), this must be seen as a weakness. The ongoing work on query
languages for the Semantic Web indicates that other developers are
more confortable with a specification that does not presuppose a
Horn implementation, but permits different developers to imple-
ment in different ways. Named Graphs can be seen as taking one
aspect of this language, noting that it is particular useful, and not
addressed by the Semantic Web recommendations, and pursuing
that.

5.2 Contexts in RDF
Guha and Fikes [37] provide contexts, aggregate contexts, lifting

rules, selective importing, preference rules, etc. They modify the
RDF model theory to have additional context parameters both in
the abstract syntax being interpreted and in the universe of inter-
pretation. They interpret sets of graphs, rather than an individual
graph. Unfortunately this step is sufficiently large to require sig-
nificant new effort for implementors of RDF and OWL inference
systems.
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Their approach shares with ours the style of expressing some of
the richer semantic constraints as extensions which constrain inter-
pretations of certain new vocabulary (for them, e.g.,importsFrom ,
for us e.g.signature ).

A significant difference is the approach to aggregation. For Guha
and Fikes certain contexts are aggregate contexts, which use lifting
rules, possibly simple imports, possibly complex non-monotonic
rules, to combine RDF data from multiple sources. They have some
universal restrictions built into the built into the model theory, for
example, lifting rules must be defined within their target aggregate
context. For us, aggregation is only ever a monotonic merging op-
eration, but the choice of what to aggregate is seen as a pragmatic
application level decision.

We find their approach to be overly complex. Feigenbaum [22]
suggests that for Semantic Web research that the “Path of maximal
return is more knowledge not more logic”. Unlike Guha and Fikes
we do not propose complex logic for contexts, merely the mini-
mum step needed to record knowledge about provenance and other
aspects of graphs needed for applications which need to address
problems of trust. Using knowledge recorded with Named Graphs,
applications will be able to use heuristics appropriate to them, to
select the graphs they wish to trust for specific purposes.

The simple approach that we take permits substantially quicker
deployment of applications that need to take provenance informa-
tion into account, uses the flexibility and expressiveness of RDF,
and is, we believe, fully adequate for Semantic Web applications
in the near future. Web technology, designed to be deployed on a
World Wide scale, needs to put a high value on simplicity, and on
incremental steps. This ensures enough development effort can be
made, in a number of systems, with different implementation strate-
gies, to support the widespread deployment needed for a Web. The
first steps of the Semantic Web are completed: systems implement-
ing the RDF and OWL recommendations are deployed. Knowledge
is published on the Semantic Web in these formats. To be effec-
tive, proposals for new Semantic Web features must build on these
foundations, and must be parsimonious in the additional implemen-
tation effort required. A key feature of Named Graphs, lacking in
TRIPLE or Guha’s contexts work, is parsimony.

5.3 RDF Dataset and SPARQL
A more recent development of the work in this paper is the RDF

Dataset used in recent drafts of the SPARQL query language, de-
fined in [36] as:

An RDF dataset is a set= {G, (u1, G1), (u2, G2),
...(un, Gn)} whereG and eachGi are graphs, and
eachui is a URI. Eachui is distinct.

G is a called the background graph.Gi are named
graphs.

The main innovation over our work is the addition of the back-
ground graph. This provides backward compatibility with RDF
without Named Graphs, and allows the Named Graphs function-
ality of SPARQL to be optional. Within the Named Graph frame-
work presented here, the background graph of SPARQL could be
implemented by using a distinguished name.

The addition of the background graph to a collection of Named
Graphs may have the side effect of reintroducing some of the dif-
ficulties that Named Graphs address. For example, merging both
background graphs and Named Graphs from different repositories,
while maintaining provenance information, may prove difficult.

6. QUERY LANGUAGES
There are two current query languages for Named Graphs: RDFQ

and TriQL.
RDFQ [42] uses an RDF vocabulary to structure queries. Queries

can be constrained to Named Graphs matching one or more graph
templates.

The following RDFQ query (serialized using Turtle [5]) iden-
tifies people having email addresses, selecting and extracting the
person identifier and email address value pairs; furthermore, the
query is restricted to statements occurring in graphs asserted by
Chris after January 31, 2003:

[:select ("person" "email");
:graph [ex:author doc:Chris;

ex:date
[:gt "2003-01-31"ˆˆxsd:date]];

:target [:id "person";
ex:email [:id "email"]]].

TriQL [8] is a graph patterns based query language inspired by
RDQL [39]. A graph pattern consists of a set of triple patterns and
an optional graph name.

The following TriQL query has similar intent.
SELECT ?person ?email
WHERE ?graph ( ?person ex:email ?email )

( ?graph ex:author doc:Chris .
?graph ex:date ?date )

AND ?date > "2003-01-31"ˆˆxsd:date

The example query uses two graph patterns. The variable?graph
is bound to the names of all graphs that contain information about
email addresses. The second pattern restricts?graph to graphs
fulfilling both triple patterns.

The W3C is developing a new RDF query language SPARQL [36],
which will also allow querying across multiple Named Graphs.
RDFQ and TriQL predate SPARQL and we expect that SPARQL
will supersede both languages once it has become a final W3C rec-
ommendation.

7. IMPLEMENTATIONS
Because Named Graphs are only a small addition on top of the

Semantic Web recommendations it is easy to implement them using
existing Semantic Web tools.

7.1 NG4J
One of these extensions is NG4J [10] which builds on the Jena

Semantic Web toolkit [15]. NG4J provides developers with an API
for manipulating sets of Named Graphs. It implements the TriX
and the TriG syntax and the TriQL query language. A set of Named
Graphs can also be viewed and manipulated as a provenance-enabled
Jena model, allowing applications to track the origin of statements.
By retrofitting Jena with an extended abstract syntax while staying
compartible with the existing Jena API, NG4J aims at providing an
migration path for existing applications based on Jena.

7.2 Jena MultiModel
One application which uses Named Graphs is a faceted browser

[38], http://www.swed.org.uk/ . This harvests RDF graphs
from potentially many sites, and stores them in aMultiModel
object which embodies the Named Graph abstraction on top of
Jena’sModel class [15], which implements the RDF abstract syn-
tax [32]. The source of any triple can be used during the faceted
browse for visual styling of that part of the data. The end-user can
apply varying levels of trust to different information presented on
a single page. The style indicates the different authors, who can be
treated with varying levels of caution.
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8. SEMANTIC WEB PUBLISHING
One application area for Named Graphs is publishing informa-

tion on the Semantic Web. This scenario implies two basic roles
embodied by humans or their agents: Information providers and
information consumers. Information providers publish informa-
tion together with meta-information about its intended assertional
status. Additionally, they might publish background information
about themselves, e.g., their role in the application area. They may
also decide to digitally sign the published information. Information
providers have different levels of knowledge, and different inten-
tions and different views of the world. Thus seen from the perspec-
tive of an information consumer, published graphs are claims by the
information providers, rather than facts. An information consumer
may accept some of these claims and reject others. We represent
these choices by introducing the concept of the information con-
sumeracceptingNamed Graphs.

Different tasks require different levels of trust. Thus information
consumers will use different trust policies to decide which graphs
should be accepted and used within the specific application. These
trust policies depend on the application area, the subjective pref-
erences and past experiences of the information consumer and the
trust relevant information available. A naive information consumer
might for example decide to trust all graphs which have been ex-
plicitly asserted. This trust policy will achieve a high recall rate but
is easily undermineable by information providers publishing false
information. A more cautious consumer might require graphs to be
signed and the signers to be known, for example, through a Web-
of-Trust mechanism. This policy is harder to undermine, but also
likely to exclude relevant information, published by unknown in-
formation providers.

8.1 Accepting Graphs
Thus, a set of Named GraphsN has not been given a single

formal meaning. Instead, the formal meaning depends on an ad-
ditional setA ⊂ domain(N). A identifies some of the graphs
in the set asaccepted. Thus there are2|domain(N)| different formal
meanings associated with a set of Named Graphs, depending on
the choice ofA. The meaning of a set of accepted Named Graphs
〈A,N〉 is given by taking the graph merge

S
a∈A N(a), and then

interpreting that graph with the RDF semantics [26], subject to
the additional constraint that all interpretationsI conform withN.
Named Graphs can be used with any of the various levels of se-
mantic theories for RDF: simple, RDF, RDFS or datatyped inter-
pretations from [26], or OWL Full interpretations from [35]. It is
a deliberate choice to work in this way with the deployed Seman-
tic Web Recommendations, rather than inventing a new semantics
with special features, perhaps from modal logic, to reflect potential
conflict between different graphs on the Semantic Web.

The choice ofA reflects that the individual graphs in the set may
have been provided by different people, and that the information
consumers who use the Named Graphs make different choices as to
which graphs to believe. Thus we do not provide one correct way
to determine the ‘correct’ choice ofA, but provide a vocabulary
for information providers to express their intentions, and suggest
techniques with which information consumers might come to their
own choice of which graphs to accept. Issues as to how to resolve
conflicts between different graphs, and how to determineA, are
seen as pragmatic issues, to be dealt with by application develop-
ers, rather than logical issues to be dealt with by formal semantics.
A motivation is that different applications will have different tol-
erances to errors, inconsistencies and variability between the data,
and a unified formal approach is likely to be overkill for some, yet
may miss key features required by another (e.g., some more formal

approaches to context [37, 40, 23] fail to address digital signatures,
vital for financially sensitive applications).

8.2 Authorities, Authorization and Warrants
Information providers using RDF do not have any explicit way to

express any intention concerning the truth-value of the information
described in a graph; RDF does not provide for the expression of
propositional attitudes, such as asserting, denying, commenting on,
or otherwise expressing an opinion about the content of a graph.
Information consumers may require this, however. Note that this
is in addition to trust policies, and may be required in order to put
such policies into operation. For example, a simple policy could
be: believe anything asserted by a trusted source. In order to apply
this, it is necessary to have a clear record of what isassertedby the
source. Not all information provided by a source need be asserted
by that source. We propose here a vocabulary and a set of concepts
designed to enable the uniform expression of such propositional
attitudes using named graphs.

We take three basic ideas as primitive: that of anauthority, a re-
lationship ofauthorizing, and awarrant. An authority is a ‘legal
person’; that is, any legal or social entity which can perform acts
and undertake obligations. Examples include adult humans, corpo-
rations and governments. The ‘authorizing’ relationship holds be-
tween an authority or authorities and a Named Graph, and means
that the authority in some sense commits itself to the content ex-
pressed in the graph. Whether or not this relationship in fact holds
may depend on many factors and may be detected in several ways
(such as the Named Graph being published or digitally signed by
the authority). Finally, a warrant is a resource which records a par-
ticular propositional stance or intention of an authority towards a
graph. A warrant asserts (or denies or quotes) a Named Graph and
is authorized by an authority. One can think of warrants as a way
of reducing the multitude of possible relationships between authori-
ties and graphs to a single one of authorization, and also as a way of
separating questions of propositional attitude from issues of check-
ing and recording authorizations. The separation of authority from
intention also allows a single warrant to refer to several graphs,
and for a warrant to record other properties such as publication or
expiry date.

To describe the two aspects of a warrant we require vocabulary
items: a propertyswp:authority (whereswp: is a namespace
for Semantic Web publishing) relating warrants to authorities, and
another to describe the attitude of the authority to the graph being
represented by the warrant. We will consider two such intentions
expressed by the propertiesswp:assertedBy andswp:quot-
edBy . These take a named graph as a subject and aswp:Warrant
as object;swp:authority takes a warrant as a subject and a
swp:Authority as an object. Each warrant must have a unique
authority, soswp:authority is an OWL functional property.
Intuitively, swp:assertedBy means that the warrant records an
endorsement or assertion that the graph is true, whileswp:quot-
edBy means that the graph is being presented without any com-
ment being made on its truth. This latter is particularly useful when
republishing graphs as part of a syndication process, the original
publisher may assert a news article, but the syndicator, acting as a
common carrier, merely provides the graph as they found it, with-
out making any commitment as to its truth. Warrants may also be
signed, and the propertyswp:signatureMethod can be used
to identify the signature technique.

8.3 Warrant Descriptions as Performatives
A warrant, as described above, is a social act. However, it is often

useful to embody social acts with some record; for example a con-
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Figure 1: The Semantic Web Publishing Vocabulary

tract (which is a social act) may be embodied in a document, which
is identified with that act, and is often signed. In this section, we in-
troduce the notion of awarrant graph, which is a Named Graph de-
scribing a warrant, that is identified with the social act. Thus, this is
a resource which is both aswp:Warrant and anrdfg:Graph .
Consider a graph containing a description of a warrant of another
Named Graph, such as:

{ :G2 swp:assertedBy _:w .
_:w rdf:type swp:Warrant 2 .
_:w swp:authority _:a .
_:a rdf:type swp:Authority .
_:a foaf:mbox <mailto:chris@bizer.de> }
The graph is true when there is a genuine warrant; but so far

we have no way to know whether this is in fact the case. A slight
modification identifies the graph with the warrant itself:

:G1 { :G2 swp:assertedBy :G1 .
:G1 swp:authority _:a .
_:a foaf:mbox <mailto:chris@bizer.de> }

Suppose further that such awarrant graphis, in fact, authorized
by the authority it describes - in this case, by Chris Bizer, the owner
of the mailbox: this might be established for example by being
published on Chris’ website, or by being digitally signed by him,
or in some other way, but all that we require here is that it is in fact
true. Under these circumstances, the warrant graph has the intuitive
force of a first-person statement to the effect “I assert:G2 ” made
by Chris.

In natural language, the utterance of such a self-describing act
is called aperformative; that is, an act which is performed by say-
ing that one is doing it. Other examples of performatives include
promising, naming and, in some cultures, marrying [2]. The key
point about performatives are that while they are descriptions of
themselves, they are not only descriptions: rather, the act of utter-
ing the performative is understood to be the act that it describes.
Our central proposal for how to express propositional attitudes on
the Web is to treat a warrant graph as a record of a performative
act, in just this way.3 With this convention, Chris can assert the
graph:G2 by authorizing the warrant graph shown above, for by
doing so he creates a warrant: the warrant graph becomes the (self-
describing) warrant of the assertion of:G2 by Chris. In order for
others to detect and confirm the truth of this warrant requires some
way to check or confirm the relationship of authorization, of course:
but the qualification of the warrant graph as a warrant depends only
on the relationship holding.

A graph describing a warrant is not required to be self-describing
in order to be true (it may be true by virtue of some other warrant)

2The type triples are implied by domain and range con-
straints and can be omitted.
3The Bank of England uses this technique, by having each twenty
pound note bear the text: “I promise to pay the bearer on demand
the sum of twenty pounds.”

and a warrant graph may not in fact be a performative warrant (if it
is not authorized by the authority it claims). In the latter case the
graph must be false, so self-describing warrant graphs whose au-
thorization cannot be checked should be treated with caution. The
warrant graph may itself be the graph asserted. Any Named Graph
which has a warrant graph as a subgraph and is appropriately au-
thorized satisfies the conditions for being a performative warrant of
itself. For example:
:G2 { :Monica ex:name "Monica Murphy" .

:G2 swp:assertedBy :G2 .
:G2 swp:authority _:a .
_:a foaf:mbox
<mailto:patrick.stickler@nokia.com> . }

when authorized by Patrick Stickler, becomes a performative war-
rant for its own assertion, as well as being warranted by the earlier
example. As this example indicates, a Named Graph may have a
number of independent warrants.

8.4 Publishing with Signatures
Information providers may decide to digitally sign graphs, when

they wish to allow information consumers to have greater confi-
dence in the information published. For instance, if Patrick has an
X.509 certificate [30], he can sign two graphs in this way:

:G1 { :Monica ex:name "Monica Murphy" .
:G1 swp:assertedBy _:w1 .
_:w1 swp:authority _:a .
_:a foaf:mbox

<mailto:chris@bizer.de> }
:G2 { :G1 swp:quotedBy :G2 .

:G1 swp:digestMethod
swp:JjcRdfC14N-sha1 .

:G1 swp:digest
"..."ˆˆxsd:base64Binary .

:G2 swp:assertedBy :G2 .
:G2 swp:signatureMethod

swp:JjcRdfC14N-rsa-sha1 .
:G2 swp:signature

"..."ˆˆxsd:base64Binary .
:G2 swp:authority _:s .
_:s foaf:mbox
<mailto:patrick.stickler@nokia.com> .
_:s swp:certificate

"..."ˆˆxsd:base64Binary }

Note that:G2 is a warrant graph. Theswp:signature gives
a binary signature of the graph related to the warrant4. The canon-
icalization algorithms and the signature method which have been
used to calculate the signature are indicated by the value of the
swp:signatureMethod property. SWP uses a similar mecha-
nism as XML-Signature [21] for signing several resources using a
single signature: Including the graph digest of:G1 into :G2 and
signing:G2 afterwards also asures the integrity of:G1 .

The information publisher indicates the methods used for form-
ing digests and signatures. We require the methods to be identified
by literal URIs, which can be dereferenced on the Web to retrieve
a document, describing the method in detail. The signature method
swp:JjcRdfC14N-rsa-sha1 , for example, specifies a varia-
tion of the graph canonicalization algorithms provided in [13], and
chooses one of the digest/signature method combinations defined
by by XML-Signature [21]. Rather than make a set of decisions
about digest and signature methods, SWP provides terms for de-
scribing the chosen combination.

The publisher may choose to sign graphs to ensure that the max-

4It is necessary to exclude the lastswp:signature triple, from
the graph before signing it: this step needs to be included in the
method.
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imum number of Semantic Web agents believe them and act on the
publication. Using signatures does not modify the theoretical se-
mantics of assertion, which is boolean; but it will modify the oper-
ational semantics, in that without signatures, any assertions made,
will only be acted on by the more trusting Semantic Web informa-
tion consumers, who do not need verifiable information concerning
who is making them.

The formal semantics of the Semantic Web publishing vocabu-
lary are described in Section 9.

8.5 The Information Consumer
The information consumer needs to decide which graphs to ac-

cept. This decision may depend on information concerning who
said what, and whether it is possible to verify such information. It
may also depend on the content of what has been said. We con-
sider the use case in which an information consumer has read a
set of Named Graphs off the Web. In terms of the semantics of
Named Graphs (Section 8.1), the information consumer needs to
determine the setA. Information about the graphs may be embed-
ded within the set of Named Graphs, hence most plausible trust
policies require that we are able to provisionally understand the
Named Graphs in order to determine, from their content, whether
or not we wish to accept them. This is similar to reading a book,
and believing it either because it says things you already believe,
or because the author is someone you believe to be an authority:
either of these steps require reading at least some of the book.

The trust policy an information consumer chooses for determin-
ing his set of accepted graphs depends on the application area, his
subjective preferences and past experiences and the trust relevant
information available. Trust policies can be based on the following
types of information [11]:

First-hand information published by the actual information pro-
vider together with a graph, e.g., information about the in-
tended assertional status of the graph or about the role of
the information provider in the application domain. Exam-
ple policies using the information provider’s role are: “Pre-
fer product descriptions published by the manufacturer over
descriptions published by a vendor” or “Distrust everything
a vendor says about its competitor.”

Information published by third parties about the graph (e.g., fur-
ther assertions) or about the information provider (e.g., rat-
ings about his trustworthiness within a specific application
domain). Most trust architectures proposed for the Seman-
tic Web fall into this category [1, 7, 24]. These approaches
assume explicit and domain-specific trust ratings. Providing
such ratings and keeping them up-to-date puts an unrealisti-
cally heavy burden on information consumers in many appli-
cation domains.

The content of a graph together with rules, axioms and related
content from graphs published by other information providers.
Example policies following this approach are “Believe in-
formation which has been stated by at least 5 independent
sources.” or “Distrust product prices that are more than 50%
below the average price.”

Information created in the information gathering process like
the retrieval date and retrieval URL of a graph or whether a
warrant attached to a graph is verifiable or not.

Example trust policies are found in [9, 11].
We sketch an algorithm that allows the agent to implement a trust

policy of trusting any RDF that is explicitly asserted. This is in-
tended to be illustrative, in the sense that different agents should
have different trust policies, and these will need different algo-

rithms. More cautious variation may require perforative assertions
or digital signatures.

The agent has an RDF knowledge base,K, which may or may
not be initially populated. The agent is presented with a set of
Named GraphsN, and augments the knowledge base with some of
those graphs (determining the setA of accepted graphs).

1. SetA := φ
2. Non-deterministically choosen ∈ domain(N) − A, if no

choices remain terminate.
3. SetK′ := K ∪N(n), provisionally assumingN(n).
4. If K′ entails:

n swp:assertedBy _:w .
then setK := K′ andA := A ∪ {n}, otherwise backtrack
to 2.

5. Repeat from 2.
If initially K is empty, then the first graph added toK will be one

that includes its own assertion, by an arbitrary warrant and author-
ity. All such graphs will be added toK, as will any that are asserted
as a consequence of the resultingK. The algorithm is equivalent
to one that seeks to accept a graph by finding a statement of its as-
sertion either within itself, or within some other accepted graph, or
the initial knowledge base. The algorithm is sound with respect to
the goal of only adding graphs that are explicitly asserted, as veri-
fied by step 4. However, it is incomplete against the same criterion,
since two graphs each of which explicitly assert the other, would
satisfy the criterion if both were accepted, but the algorithm misses
that. We see the self-asserting performative warrant as the basic
communicative act, and more sophisticated phrasings (such as the
mutually asserting graphs), are less likely to be understood.

At step 4, :w is unconstrained, reflecting the simple policy of
trust everybody. A slightly more sophisticated query could imple-
ment a policy that, for example, only trusted a set of named individ-
uals, or require that any self-asserting graph actually be a warrant
graph.

This algorithm does not take consistency into account. As we
merge internally consistent graphs in step 3 we may introduce in-
consistencies that occur between the graphs. In some cases, it may
not be possible to even detect this, for example in OWL Full which
has an undecidable theory. For a semantics with a complete and
terminating consistency checker [14] (such as for OWL Lite), in-
consistency could be detected immediately. We do not propose any
particular response to inconsistency. Some applications, such as
the faceted browser of [38], may not care, whereas others, may
wish to use inconsistency to reject some of the graphs, in favour
of a maximal consistent subset. Mechanisms such as those used in
truth maintenance systems would be useful for these applications.

8.5.1 Using a Public Key Infrastructure
The trust algorithm above would believe fraudulent claims of as-

sertion. That is, any of the Named Graphs may suggest that anyone
asserted any of the graphs, whether or not that is true, and the above
algorithm has no means of detecting that.

We have described how a publisher can sign their graphs and
include such signatures in the published graphs. We will continue
to explore the X.509 certified case; in general the PGP [44] case is
similar, and the approach taken does not assume a particular PKI.

The earlier example can be checked by modifying the query in
step 4 to be:
SELECT ?certificate ?method ?sign
WHERE ( ?w1 swp:assertedBy ?w1 .

?w1 swp:authority ?s .
?w1 swp:signatureMethod ?method .
?w1 swp:signature ?sign )

( ?s swp:certificate ?certificate )
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where this is understood as being over the interpretation of the
graph, rather than as a syntactic query over the graph. The sig-
natures must be verified following the given method. If this ver-
ification fails then the graph is false and can be rejected. If the
verification succeeds then the certification chain should be consid-
ered by the information consumer. If the agent trusts anyone in the
certificate chain5, then the graph is accepted, otherwise not. More
sophisticated algorithms would consider whether the person assert-
ing the graph, who has now been verified, is in the group of persons
which the information consumer trusts on the topic the graph dis-
cusses.

A graph may have more than one warrant. If any warrant con-
tains an incorrect signature, then the warrant is simply wrong, and
indicates data or algorithmic corruption. A graph containing such
a warrant (but not necessarily the named graph misasserted) should
be rejected. The choice of which warrant to check is nondetermin-
ismic and hence should consider any valid warrant whose certifica-
tion chain is trusted.

9. FORMAL SEMANTICS OF PUBLISHING
AND SIGNING

This section provides an extension of RDF semantics [26] which:
allows persons to be members of the domain of discourse; allows
interpretations to be constrained by the identifying information in
a digital certificate; allows theswp:assertedBy triple to have a
performativesemantics; and makesswp:signature triples true
or false depending on whether the signature is valid or not. To-
gether these extensions underpin the publishing framework of the
previous section.

9.1 Persons in the Domain of Discourse
The two frameworks of digital signatures we have considered

both tie a certificate to a legal person (e.g., a human or a company),
or similar. In X.509, a certificate includes a distinguished name [29,
43], which is chosen to adequately identify a legal person, and is
verified as accurate by the certification authority. In PGP, a certifi-
cate contains unspecified identifying information, “such as his or
her name, user ID, photograph, and so on” [44]; this is usually an
e-mail address.

The class extension ofswp:Authority is constrained to be
a setP of legal persons and software agents acting on behalf of
legal persons. Thus, our formal semantics requires the universe
of discourse to contain such persons as resources. Such a require-
ment goes beyond the usual ‘logical’ bounds of model-theoretic
semantics. We expect that Web languages will further extend their
semantics into the real world of agents, acts and things as they be-
come applied in real-world applications. This first step is, in itself,
not very interesting since we have not constrained which person in
the real world corresponds to which URIref or blank node in the
graph.

The second step is to constrain the property extension ofswp:-
certificate to {(p, c)|p ∈ P, c a sequence of binary octets,
with c being an X.509 or PGP certificate forp}. The binary octets
can be represented in a graph usingxsd:base64Binary . The
interpretation of these sequences as X.509 is specified in [30], which
gives a distinguished name from RFC 2253 [43], which identifies a
person. Ifc gives a PGP certificate then given the potential vague-
ness of the identifying information we allow all pairs of in which
the person matches the identifying information. For example, if the

5For PGP, the specific method of determining whether the certifi-
cate is trusted is different.

identifying information is only a GIF image, then all people who
look like that image are paired with the certificate.6

This definition doesnot depend on whether or not the certifi-
cate is trusted. If the graph containing theswp:certificate
triple is accepted, using mechanisms such as those discussed in
Section 8.5, then the triple’s meaning is as above. The certificate
chain in the certificate is only checked when deciding which graphs
to accept.

9.2 Performative warrants
A formal model-theoretic semantics specifies truth conditions.

To fully capture the meaning of a performative, however, we need
to go beyond truth-conditions, since the very same form of words
may be true whoever uses them, but will only count as a perfor-
mative if used by the authority it mentions. For example “Patrick
promises...” uttered by Patrick is a promise - a performative act
- but uttered by Christian is merely a description of the act; yet
it may well still be true, and for the same reasons. We will deal
with this by considering a warrant graph to be a ‘genuine’ warrant
just when it describes its authority accurately, and to be true in any
interpretation under which a genuine warrant actually exists.

The relationship of authorizing, and sets of authorities and war-
rants (from Section 8.2), are taken as primitive, and we will identify
them, respectively, with the property extension ofswp:authority
and the class extensions ofswp:Authority andswp:Warrant .
All the remaining semantic conditions are defined in terms of these,
so their correctness in any application depends on that of the inter-
pretation ofswp:authority together with its range and domain.
Thus a triple
ex:a swp:authority ex:b .

is true inI just whenI(ex:a ) is a warrant which is authorized by
I(ex:b ).

The performative role of a properly authorized warrant graph can
then be described by simply declaring that any Named Graphng
containing a triple
name(ng) swp:authority bbb .

is a warrant. Then any interpretationI of rdfgraph(ng) (conform-
ing to the naming ofng) under whichng is authorized byI(bbb)
makes this triple true, and hence requiresng to be in
ICEXT(I(swp:Warrant )): call this anauthorizing interpreta-
tion of the Named Graph. Fixing the referent of the object of such
a triple to be an authorizing authority thus means that the graph
can be satisfied only by authorizing interpretations under which the
Named Graph is a warrant.

The self-realizing quality of performatives is extended to the
triples which express propositional attitudes by making these triv-
ially self-fulfilling when they occur under the right conditions, in
an authorized warrant graph. For example ifng is a warrant graph
which contains a triple
aaa swp:assertedBy bbb .

whereI(bbb) = ng, then ifI is an authorizing interpretation ofng,
thenI must satisfy that triple; similarly forswp:quotedBy and
indeed for any other property expressing a propositional attitude of
an authority towards a graph.

Note that this does not imply that a Named Graph istrue in an
authorizing interpretation of a warrant which asserts it. The fact
of an authority asserting a graph can be true independently of the
actual truth of the graph. However, the attitude expressed can be
utilized by trust policies. It may be appropriate to treat graphs as-
serted by trusted authorities as being true, but not to extend this to

6This shows why it is unwise to only provide an image in your PGP
certificate.
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graphs quoted by trusted authorities. One could express this trust
policy by a semantic rule to the effect that ifI satisfies
aaa swp:assertedBy bbb .
bbb swp:authority ccc .

andI(ccc) is trusted, thenI satisfiesrdfgraph(I(aaa)).
The algorithm for choosing which graphs to accept, presented in

Section 8.5, interacts with this performative semantics, by essen-
tially assuming that a graph has been asserted, and then verifying
that in that case the performative is true.

Usingrdfs:subPropertyOf orowl:equivalentProp-
erty to introduce aliases ofswp:assertedBy may be mislead-
ing and should be avoided. Information consumers should be sus-
picious of any graphs that attempt this, except when they are also
asserted by the persons using the aliases so introduced.

9.3 Graph Digests and Signatures
The final specialized vocabulary we consider is that for graph

digests and signatures. Strictly speaking this is not necessary for
Semantic Web publishing, but just as a signed document has greater
social force than an unsigned one, a signedswp:assertedBy
triple is more credible than an unsigned one. Thus, this section is
specifically intended to be used to sign graphs that are either the
subject of, or includeswp:assertedBy triples.

The two propertiesswp:digest andswp:signature are
treated in a similar fashion: we start with the simplerswp:digest .

A pair (g, d) is in the property extension ofswp:digest , if
and only if,

1. d is a finite sequence of octets.
2. There is a pair(g, m) in the property extension ofswp:di-

gestMethod , andm is a URI which can be dereferenced
to get a document.

3. The method described in the document retrieved fromm cal-
culates the digestd for the graphI(g).

This means that answp:digest triple is true if and only if
the value is the appropriate digest. Hence, if the graph which is
the subject of the triple has been tampered with, such tampering is
detected by theswp:digest triple being false.

Similarly, a pair(w, s) is in the property extension ofswp:sig-
nature , if and only if,

1. s is a finite sequence of octets.
2. There is a pair(w, m) in the property extension ofswp:sig-

natureMethod , andm is a URI which can be derefer-
enced to get a document.

3. There is a pair(w, a) in the property extension ofswp:au-
thority and a pair(a, c) in the property extension ofswp:
certificate , andc is a finite sequence of octets.

4. There is a pair(g, w) in the property extension ofswp:
quotedBy or swp:assertedBy , andI(g) is a Named
Graph.

5. The method described in the document retrieved fromm cal-
culates the signatures for the graphI(g) usingc understood
as an X.509 or PGP certificate.

This definition does not depend upon verifying the certificate
chain forc.

10. CONCLUSIONS
Having a clearly defined abstract syntax and formal semantics

Named Graphs provide greater precision and potential interoper-
ablity than the variety ofad hocRDF extensions currently used.
Combined with specific further vocabulary, this will be beneficial
in a wide range of application areas and will allow the usage of a
common software infrastructure spanning these areas.

The ability of self-reference combined with the Semantic Web
Publishing vocabulary addresses the problem of differentiating as-
serted and non-asserted forms of RDF and allows information pro-
viders to express different degrees of commitment towards pub-
lished information.

Linking information to authorities and optionally assuring these
links with digital signatures gives information consumers the ba-
sis for using different task-specific trust-policies. We have shown
how operational trust can depend on what is being said, rather than
simply depending on who said it, and the trust-rating of the author.

Named Graphs provide a high-value but small and incremental
change to the Semantic Web Recommendations. Thus they should
be preferred over more complex, all-embracing approaches to con-
text that are more likely to face substantial barriers to adoption.

Further related work can be found at the TriX and Named Graphs
web-sitehttp://www.w3.org/2004/03/trix/ .
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